New BGL File structure

This is a first attempt to understand the file structure of the new FS2004 scenery files. It is still very incomplete, since I do not understand all the features. Some sections are still missing.

© Winfried Orthmann
eMail: winfriedorthmann@yahoo.com

BGL Files Overview

FS 2004 BGL-files in the new format

File Name	Contents	Sections
AP^{*}. BGL	Airports	
AT^{*}.BGL	Waypoints and boundaries	
NV^{*}.BGL	Navaids	
OB*.BGL	Airport objects	including .mdl data
[city name].BGL	city objects	including .mdl data

FS 2004 BGL-files in the old format

File Name	Contents
AB*. BGL	Terrain Data : Airport Background
BR*. BGL	Terrain Data : Bridges
FL*.BGL	Terrain Data : Airport flattens
HL*. BGL	Terrain Data : Coastlines
HP*. BGL	Terrain Data : Land/Water masks
PK*. BGL	Terrain Data : parks
RD*.BGL	Terrain Data : roads
RR*. BGL	Terrain Data : railroads
ST*.BGL	Terrain Data
UT*.BGL	Terrain Data : utilities (poles etc)

Data types

Latitude and longitude are no longer represented as before. Each location on the earth is fixed in the LOD grid. Longitude and latitude are each represented by a 4 byte value (DWORD). The formula for obtaining the decimal values is as follows:

```
(double) Lon = (DWORD) Lon * (360.0 / (3 * 0x10000000) - 180.0
(double) Lat = 90.0 - (DWORD) Lat * (180.0 / (2 * 0x10000000)
```

Altitude is given in $1 / 1000 \mathrm{~m}$ as DWORD.
Pitch, bank and heading: is given as ANGLE16 in form of a DWORD. The formula for obtaining the decimal value is as follows:
(double) Pitch = (DWORD) Pitch * 360.0 / 0x10000
ICAO Identifiers and region codes are coded in a special format. Each number and letter is assigned a value from 0 .. 37:
blank
00
digits 0 .. $9 \quad 02$.. 11
letters A.. Z 12 .. 37
The code is calculated by starting from left: assign value to first digit/letter, multiply by 38 and move one digit/letter to the right, add value of this digit/letter, and as long as there are more digits/letters repeat this process. The region codes have only 2 digits/letters and the result is used as such; for the ICAO identifiers for airports, ILS, VOR, NDB there are up to 5 digits/letters, and the result is
shifted left by 5 positions, i.e. multiplied by 0×20; the ICAO identifiers for primary and secondary ILS in a runway record are shifted left by 1 position, i.e. multiplied by 2.

BGL file header

The new BGL file header consists of a fixed part with the length of 0×38 (54) bytes and a variable number of section pointers.

The fixed part of the header has the following structure:

offset	length	format	description	contents
0	2	WORD	New bgl ID	0×0201
2	2	WORD	Probably version	0×1992
4	4	DWORD	size of header	0×0034
8	12	DWORD[3]	Unknown, possibly connected to compilation time	
20	4	DWORD	number of section pointers in header	
			rest unknown	

Each section pointer is 20 bytes long and has the following structure

offset	length	format	description	contents
0	4	DWORD	Type of section The following types have been identified: 0x0003: airport data 0x0013: VOR / ILS data 0x0017: NDB data 0x0018: marker 0x0020: Boundary data 0x0022: waypoint data 0x0023: geopol data 0x0025: scenery objects 0x0027: namelist 0x002b: mdl data 0x002c: additional airport data probably only used for information 0x002e: exclusionRectangle	
4	4	DWORD	unknown	
8	4	DWORD	Number of subsection pointers in section header	
12	4	DWORD	Offset from file start to section header	
16	4	DWORD	Size of section header	

BGL section header

The section pointer records in the header point to the section header which consist of 1..n subsection pointer records. The number of subsection pointer records present is given in the section pointer record.
Each subsection pointer record is 16 bytes long and has the following structure:

offset	length	format	description	contents
0	4	DWORD	ID. Since some of the sections are apparently subdivided into subsections according to the location of the objects in the LOD system, this ID seems to be an index giving the location of the object (not yet understood)	
4	4	DWORD	Number of records in the subsection	
8	4	DWORD	Offset from file start to start of object records in this subsection	
12	4	DWORD	Size of subsection	

The section header for records of Boundary and Geopol type has a different structure. It consists of a 16 bytes long record for every subsection with the following structure:

offset	length	format	description	contents
0	4	DWORD	ID. Since some of the sections are apparently subdivided into subsections according to the location of the objects in the LOD system, this ID seems to be an index giving the location of the object (not yet understood)	
4	4	DWORD	Number of records in the subsection	
8	4	DWORD	Index into the list following these records	
12	4	DWORD	unknown, seems always to contain	0×00000000

after this list follows a 8 byte record for every subsection with the following structure

offset	length	format	description	contents
0	4	DWORD	offset from start of file to start of records	
4	4	DWORD	length of subsection	

BGL subsections

The subsections for each kind of objects (airports, sceneryObjects, ILS etc) consist of a list with the individual records following each other. Each record has at offset 2 a DWORD giving the total size of this record. Thus it is easy to find the start of the next record. Each section and thus each subsection contains records of the same general type. A number of records can contain subrecords, which in turn have a size field at offset 2 after a WORD identifying the type of subrecord.

Airports

Each airport record consists of a fixed part with the length of 52 bytes, followed by a variable part with 0 ..n subrecords of different types. The structure of fixed part is as followes:

offset	length	format	description	contents
0	2	WORD	ID	0×0003
2	4	DWORD	Size of airport record	
6	1	BYTE	Number of runways subrecords	
7	1	BYTE	Number of com subrecords	
8	1	BYTE	Number of start subrecords	
9	1	BYTE	Unknown	
10	1	BYTE	Bit 0-6: numer of aprons (?) Bit 7: flag for deleteAirport record	
11	1	BYTE	Number of helipad subrecords	
12	4	DWORD	Longitude	
16	4	DWORD	Latitude	
20	4	DWORD	Elevation	
24	4	DWORD	Longitude of tower (if present)	
28	4	DWORD	Latitude of tower (if present)	
32	4	DWORD	Elevation of tower (if different from airport)	
36	4	float	Magnetic variation	
40	4	DWORD	ICAO ident (special format)	
44	4	DWORD	unknown	
48	4	DWORD	unknown	

The following subrecords can be present within the airport record:

Name

offset	length	format	description	contents
0	2	WORD	ID	0×0019
2	4	DWORD	Size of name subrecord	
6		STRING	airport name	

RUNWAY

The runway subrecord consists of a fixed part with a length of 52 byte and a variable number of sub-subrecords. The fixed part has the following structure;

offset	length	format	description	contents
0	2	WORD	ID	0x0004
2	4	DWORD	size of runway subrecord	
6	2	WORD	type of surface. The following numbers have been found:	
8	1	BYTE	primary runway number (01-36, then 37ss. for NORTH, NORTHEAST, EAST, ...	
9	1	BYTE	```primary runway designator 0 = NONE, 1 = LEFT, 2 = RIGHT, 3 = CENTER, 4 = WATER```	
10	1	BYTE	secondary runway number	
11	1	BYTE	secondary runway designator	
12	4	DWORD	ICAO ident. for primary ILS (special format),	

			0x0000 if none	
6	4	DWORD	ICAO ident. for secondary ILS	
20	4	DWORD	longitude	
24	4	DWORD	latitude	
28	4	DWORD	elevation	
32	4	float	length in m	
36	4	float	width in m	
40	4	float	heading	
44	4	float	pattern altitude	
48	2	WORD		
50	1	BYTE	```light flages: BIT 0-1: edge (00 none, 01 low, 10 medium, 11 high) BIT 2-3: center (as with edge) BIT 5: flag for centerRed BIT 5-7: unused (?)```	
51	1	BYTE	pattern flags: BIT 0: primaryTakeoff (0 = YES) BIT 1: primaryLanding (0 = YES) BIT 2: primaryPattern (0 = LEFT) BIT 3: secondaryTakeoff BIT 4: secondaryLanding BIT 5: secondaryPattern BIT 6-7: unused (?)	

The following sub-subreports con be present within a runway subrecord:

OffsetThreshold

offset	length	format	description	contents
0	2	WORD	IDprimary: secondary 	4
2	DWORD	Size of sub-subrecord	0×0000	
6	2	WORD	surface (same as in runway)	0×0010
8	4	float	length in m	
12	4	float	width in m	

Blastpad

offset	length	format	description	contents
0	2	WORD	ID primary: secondary	0×0007 0×0008
2	4	DWORD	Size of sub-subrecord	0×0010
6	2	WORD	surface (same as in runway)	
8	4	float	length in m	
12	4	float	width in m	

Overrun

offset	length	format	description	contents
0	2	WORD	ID primary:	
			secondary	0×0009
2	4	DWORD	Size of sub-subrecord	$0 \times 000 \mathrm{a}$
2				

6	2	WORD	surface (same as in runway)	
8	4	float	length in m	
12	4	float	width in m	

VASI

offset	length	format	description	contents
0	2	WORD	IDprimary left : primary right: secondary left: secondary right:	

ApproachLights

offset	length	format	description	contents
0	2	WORD	IDprimary: secondary 2$\quad 4$	DWORD
6	1	BYTE	Size of sub-subrecord	system
7	1	BYTE	number of strobes	0×00008

(end of runway)

Start

(the keywords "Start" and "RunwayStart" produce identical subrecords)

offset	length	format	description	contents
0	2	WORD	ID	0×0011
2	4	DWORD	Size of start subrecord	0×0018
6	1	BYTE	runway number	
7	1	BYTE	runway designator (as with runway subrecord)	
8	4	DWORD	longitude	
12	4	DWORD	latitude	
16	4	DWORD	elevation	
20	4	float	heading	

Сом

offset	length	format	description	contents
0	2	WORD	ID	0x0012
2	4	DWORD	Size of subrecord: variable	
6	2	WORD	type. The following numbers have been identified:	
8	4	DWORD	frequency	

DELETEAIRPORT

The DeleteAirport subrecord has a fixed and a variable part. Thje fixed part has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0x0033
2	4	DWORD	Size of subrecord: variable	
6	2	WORD	delete flags BIT 0: allApproaches BIT 1: allApronLights (Note: in the bglcomp.xsd this keyword is written allApronlights, but the compiler accepts only allApronLights. You have to edit bglcomp.xsd, if you want to use this feature) BIT 2: allAprons BIT 3: allFrequencies BIT 4: allHelipads BIT 5: allRunways BIT 6: allStarts BIT 7: allTaxiways	
8	1	BYTE	number of individual runways to delete	
9	1	BYTE	number of individual starts to delete	
10	1	BYTE	number of frequencies to delete	
11	1	BYTE	unused (?)	

according to the number of individual features to delete there are the following parts of the record added:
for runways:

offset	length	format	description	contents
0	1	BYTE	surface (as in runway subrecord)	
1	1	BYTE	runway number primary	
2	1	BYTE	runway number secondary	
3	1	BYTE	bit 0-3: runway designator primary bot 4-7: runway designator secondary	

for starts:

offset	length	format	description	contents
0	1	BYTE	runway number	
1	1	BYTE	runway designator	
2	1	BYTE	type of start $1=$ RUNWAY, $2=$ WATER, $3=$ HELIPAD	
3	1	BYTE	unused (?)	

for frequencies

offset	length	format	description	contents
0	4	DWORD	bit 28-31: type bit 0-27: frequency	

Apron

There are 2 subrecords for each apron which follow each other. Both have variable length. First record:

offset	length	format	description	contents
0	2	WORD	ID	0×0037

2	4	DWORD	size	
6	1	BYTE	surface (as with runway subrecord)	
7	1	BYTE	number of vertices / 2 WORD prüfen!	
			and then for each vertex:	
	4	DWORD	longitude	
	4	DWORD	latitude	

second record:

offset	length	format	description	contents
0	2	WORD	ID	0×0030
2	4	DWORD	size	
6	1	BYTE	surface (as in first record)	
7	1	BYTE	flags: bit 0: drawSurface bit 1: drawDetail	
		the rest of the record still not understood, maybe some kind of splitting the area into triangles ??		

TAXIWAYPOINT

All taxiway points are joined in one record, which has a fixed part of 8 bytes and a variable part with 12 bytes for each point. Structure of the fixed part:

offset	length	format	description	contents
0	2	WORD	ID	$0 \times 001 \mathrm{~A}$
2	4	DWORD	size : variable	
6	2	WORD	number of taxiway points present	

and for each taxipoint:

0	1	BYTE	type: $0=$ NORMAL, 2 = HOLD_SHORT $3=$ ILS_HOLD_SHORT	
1	1	BYTE	flag: 0 = FORWARD, 1 = REVERSE	0×0000
2	1	WORD	unknown	
4	4	DWORD	longitude	
8	4	DWORD	latitude	

TAXIWAYPARKING

This record type has a short fixed part for all TaxiwayParking recorsds together and a longer variable part with sections for each TaxiwayParking. The fixed part is 8 bytes long:

offset	length	format	description	contents
0	2	WORD	ID	$0 \times 001 \mathrm{~B}$
2	4	DWORD	size : variable	
6	2	WORD	number of taxiway parking records present	

The record sections for each TaxiwayParking are again of variable length, depending on the number of airlineCodes present:.

0	4	Bitfield	bit 31-28: count of airlineCodes present bit 27-12: number bit 11-8: type

4	4	float	radius
8	4	float	heading (here as float!!)
12	4	DWORD	longitude
16	4	DWORD	latitude
\cdots	4	STRING	airline designator (0..n times repeated)

TAXIWAYPATH

This record has a fixed length of 8 byte and a variable part with records for each path. It has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0x001C
2	4	DWORD	size	0x001C
6	2	WORD	number of paths defined	
			and then for each path:	
0	2	WORD	index of start point	
2	2	WORD	Bit 0-11: index of end point	
			Bit 12-15: runway designator	
4	1	BYTE	?	
5	1	BYTE	runway number / index into TaxiName	
6	1	BYTE	bitfield BIT 0: centerline BIT 1: centerLineLighted BIT 2-3: leftEdge ($00=$ NONE, $01=$ SOLID, 10 = DASHED, 11 = SOLID_DASHED) BIT 4: leftEdgeLighted BIT 5-6: rightEdge BIT 7: rightEdgeLighted	
7	1	BYTE	surface	
8	4	float	width	
12	4	WORD	weightLimit	
16	4	DWORD	??	

TaxiName

This record has variable length, it consist of 8 bytes as a fixed part and then 8 bytes for each Name

offset	length	format	description	contents
0	2	WORD	ID	$0 \times 001 D$
2	4	DWORD	size : variable	
6	2	WORD	number of name entries	
			and then for each name	
	8	STRING	taxiName	

TAXIWAYSIGN

These record are coded in the section for scenery objects (0×25) with a separate type of entry. The record length depends on the length of the label. The structure is only partially understood.

offset	length	format	description	contents
0	2	WORD	ID	0×0005
2	2	WORD	size : variable	
4	4	DWORD	longitude	
8	4	DWORD	latitude	
12	4	DWORD	altitude (?) cannot be coded with the compiler	0×0001
16	2	WORD	altitudeIsAGL cannot be coded	
18	2	WORD	pitch (?) cannot be coded	
20	2	WORD	bank (?) cannot be coded	
22	2	WORD	(heading) (?) cannot be coded	
24	2	WORD	imageComplexity (?) cannot be coded	
26			unknown	
40	2	WORD	heading as coded	
42	1	BYTE	Size (SIZE1 . SIZE5)	
43	1	BYTE	justification (1 = right, 2 = left)	
44	var	STRINGZ	label	

WAYPOINT

The waypoint record con be part of the Airport group or can be entered independently. In both cases the output for the BGL is the same.

offset	length	format	description	contents
0	2	WORD	ID for Waypoint	0x0022
2	4	DWORD	size : variable	
6	1	BYTE	```type 1 = NAMED, 2 = UNNAMED, 3 = VOR 4 = NDB, 5 = OFF_ROUTE, 6 = IAF 7 = FAF```	
7	1	BYTE	number of Route entries to follow	
8	4	DWORD	latitude	
12	4	DWORD	longitude	
16	4	float	magvar	
20	4	DWORD	waypointIdent (special format)	
24	2	WORD	waypointRegion (special format)	
26	2	WORD	unknown	
			optional, if Route is given:	
28	1	BYTE	routeType (1 = VICTOR, $2=$ JET, $3=$ BOTH	
29	8	char [8]	name (zero padded), name cannot be longer than 8 characters	
			for Next:	
37	4	DWORD	```BIT 0-2: type 2 = VOR, 3 = NDB, 5 = all other``` BIT 5-31: waypointIdent (special format)	
41	2	WORD	waypointRegion (special format)	

43	2	WORD	unknown	
45	4	float	altitudeMinimum	
			for Previous:	
49	4	DWORD	type + waypointIdent (as for Next)	
51	2	WORD	waypointRegion	
53	2	WORD	unknown	
55	4	float	altitudeMinimum	

ILS / VOR

The records for ILS and VOR are in the same section and they are identical for the fixed section. ILS records can have an additional subrecord
The fixed part is 40 bytes long and has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0x0013
2	4	DWORD	size	
6	1	BYTE	```type. The following numbers have been found: 0x0001 VOR TERMINAL 0x0002 VOR LOW 0x0003 VOR HIGH 0x0004 ILS 0x0005 VOR VOT```	
7	1	BYTE	flags. The following bits have been recognized: bit 0: if 0 then DME only bit 2: backcourse bit 3: glideslope present bit 4: DME present bit 5: NAV true	
8	4	DWORD	longitude	
12	4	DWORD	latitude	
16	4	DWORD	elevation	
20	4	DWORD	frequency	
24	4	float	range in m	
28	4	float	magnetic variation	
32	4	DWORD	ICAO ident (special format)	
36	2	WORD	region	
38	2	WORD	unknown	

The following subrecords can follow:
(for ILS)

offset	length	format	description	contents
0	2	WORD	ID	0×0014
2	4	DWORD	size	0×0010
6	2	WORD	unknown	
8	4	float	heading	
12	4	float	Width	

(for ILS)

offset	length	format	description	contents
0	2	WORD	ID glideslop	0×0015
2	4	DWORD	size	$0 \times 001 \mathrm{C}$
6	2	Word	unknown	
8	4	DWORD	longitude	
12	4	DWORD	latitude	
16	4	DWORD	elevation	
20	4	float	range	
24	4	float	pitch	

(for ILS/VOR)

offset	length	format	description	contents
0	2	WORD	ID DME	0×0016
2	4	DWORD	size	0×0018
6	2	WORD	unknown	
8	4	DWORD	longitude	

12	4	DWORD	latitude	
16	4	DWORD	elevation	
20	4	float	range	

After these subsections, a name subsection is added:

offset	length	format	description	contents
0	2	WORD	ID	0×0019
2	4	DWORD	size	
6		STRING	Name (max. 48 characters)	

if VisualModel is added in the source file, the compiler adds another section to the file with a record of type 0×0025 (SceneryxObject) with the GUID for the object referenced. The coordinates for this objects are taken from the ILS/VOR and adjusted, if BiasXYZ is added to the VisualModel.

NDB

The NDB records are stored in a separate section. The have a 40 bytes long fixed section and a name section of variable length. The fixed section has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0x0017
2	4	DWORD	size variable	
6	2	WORD	$\begin{aligned} \text { Type } & \\ 0 & =\text { COMPASS_POINT } \\ 1 & =\mathrm{MH} \\ 2 & =\mathrm{H} \\ 3 & =\mathrm{HH} \end{aligned}$	
8	4	DWORD	frequency	
12	4	DWORD	longitude	
16	4	DWORD	latitude	
20	4	DWORD	elevation	
24	4	float	range	
28	4	float	magnetic variation	
32	4	DWORD	ICAO ident (special format)	
36	2	WORD	region	
38	2	WORD	unknown	

The name subsection has the following structure

offset	length	format	description	contents
0	2	WORD	ID	0×0019
2	4	DWORD	size	
6		STRING	name	

SceneryObject

LIBRARYOBJECT

The record has a fixed length of 48 byte with the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0×0002
2	2	WORD	size	0×0030
4	4	DWORD	longitude	
8	4	DWORD	latitude	
12	4	DWORD	altitude	
16	2	WORD	flag: 1 = isAboveAGL	
18	2	WORD	pitch	
20	2	WORD	bank	
22	2	WORD	heading	
24	2	WORD	imageComplexity $0=$ VERYSPARSE $2=$ NORMAL $4=$ VERYDENSE	$3=$ DENSE

if an AttachedObject exists, there are three other records following:

offset	length	format	description	contents
0 = 48	2	WORD	ID	0x0010
$2=50$	2	WORD	unknown, maybe size	0x0004
			and then $2^{\text {nd }}$ record	
$0=52$	2	WORD	ID	0x0008
$2=54$	2	WORD	size	
$4=56$	2	WORD	unknown (maybe offset of attach point string	0x001c
$6=58$	2	WORD	pitch	
$8=60$	2	WORD	bank	
$\begin{array}{r} 10= \\ 62 \end{array}$	2	WORD	heading	
$\begin{array}{r} 12= \\ 64 \end{array}$	12	DWORD[3]	unknown, possibly longitude, latitude, altitude if there is a bias? (Note: against the xml-scheme published, the compiler does not accept a bias for attachements, and in the MS scenery files I did not find a case where these fields were not zero)	
$\begin{array}{r} 24= \\ 76 \end{array}$	1	BYTE	```type 0xf5 = CIVILIAN AIRPORT 0xf6 = CIVILIAN HELIPORT 0xf7 = CIVILIAN SEA_BASE 0xf8 = MILITARY AIRPORT 0xf9 = MILITARY HELIPORT 0xfa = MILITARY SEA_BASE```	
$\begin{array}{r} 25= \\ 77 \\ \hline \end{array}$	1	BYTE	unknown always	0x01 (?)
$\begin{array}{r} 26= \\ 78 \end{array}$	2	WORD	unknown , always	0x0000
28		STRINGZ	name of attachment point	
			and then $3^{\text {rd }}$ record	
0	2	WORD	ID	0x1001
2	2	WORD	size (?)	0x0004

Effect

The record has a fixed part of 108 byte and a variable part. The fixed part has the following structure:

offset	length	format	description		contents
0	2	WORD	ID		0x0004
2	2	WORD	size : variable		
4	4	DWORD	longitude		
8	4	DWORD	latitude		
12	4	DWORD	altitude		
16	2	WORD	flag: 1 = isAboveAGL		
18	2	WORD	pitch		
20	2	WORD	bank		
22	2	WORD	heading		
24	2	WORD	```imageComplexity 0 = VERYSPARSE 2 = NORMAL 4 = VERYDENSE```	$\begin{aligned} & 1=\text { SPARSE } \\ & 3=\text { DENSE } \end{aligned}$	
26	2	WORD	unknown		
28	80	STRINGZ	effectName		
108	variable	STRINGZ	effectParams		

GenericBuilding

NB.: BuildingBias is not implemented in the compiler.

offset	length	format	description	contents
0	2	WORD	ID	0x0001
2	2	WORD	size : variable	
4	4	DWORD	longitude	
8	4	DWORD	latitude	
12	4	DWORD	altitude	
16	2	WORD	flag: 1 = isAboveAGL	
18	2	WORD	pitch	
20	2	WORD	bank	
22	2	WORD	heading	
24	2	WORD	```imageComplexity 0 = VERYSPARSE 1 = SPARSE 2 = NORMAL 3 = DENSE 4 = VERYDENSE```	
26	2	WORD	unknown	
28	4	float	scale	
32	2	WORD	type: 0x00a0 generic building	
34	2	WORD	size of record	
36	2	WORD	subtype. The following numbers have been identified: $0 x 0004$ rectangular with roofType FLAT 0×0006 rectangular with roofType RIDGE $0 x 0007$ rectangular with roofType PEAKED $0 x 0008$ rectangular with roofType SLANT $0 x 0009$ pyramidal building 0x000a multisidedBuilding	

for all rectangular buildings:

38	2	WORD	sizeX	0
40	2	WORD	sizeZ	1
42	2	WORD	bottomTexture	2

44	2	WORD	sizeBottomY	3
46	2	WORD	textureIndexBottomX	4
48	2	WORD	textureIndexBottomZ	5
50	2	WORD	WindowTexture	6
52	2	WORD	sizeWindowY	7
54	2	WORD	textureIndexWindowX	8
56	2	WORD	textureIndexWindowY	9
58	2	WORD	textureIndexWindowZ	10
60	2	WORD	topTexture	11
62	2	WORD	sizeTopY	12
64	2	WORD	textureIndexTopX	13
66	2	WORD	textureIndexTopZ	14
68	2	WORD	roofTexture	15
70	2	WORD	textureIndexRoofX	16
72	2	WORD	textureIndexRoofZ	17

end for rectangular buildings with rooftype FLAT
for rectangular buildings with roofType RIDGE or SLANTED

74	2	WORD	sizeRoofy	18
76	2	WORD	textureIndexGableY	19
78	2	WORD	gableTexture	20
80	2	WORD	textureIndexGableZ	21
for roofType SLANTED only				
82	2	WORD	faceTexture	22
84	2	WORD	textureIndexFaceX	23
86	2	WORD	textureIndexFaceY	24

for rectangular buildings with roofType PEAKED

74	2	WORD	sizeRoofY	18
76	2	WORD	textureIndexRoofY	19

for multisided buildings:

38	2	WORD	buildingSides. The Argument for smoothing seems to have no effect!!	0
40	2	WORD	sizeX	1
42	2	WORD	sizeZ	2
44	2	WORD	bottomTexture	3
46	2	WORD	sizeBottomY	4
48	2	WORD	textureIndexBottomX	5
50	2	WORD	WindowTexture	6
52	2	WORD	sizeWindowY	7
54	2	WORD	textureIndexWindoxX	8
56	2	WORD	textureIndexWindowY	9
58	2	WORD	topTexture	10
60	2	WORD	sizeTopY	11
62	2	WORD	textureIndexTopX	12
64	2	WORD	roofTexture	13
66	2	WORD	sizeRoofY	14
68	2	WORD	textureIndexRoofX	15
70	2	WORD	textureIndexRoofY	16

for pyramidal buildings

38	2	WORD	sizeX	0
40	2	WORD	sizeZ	1
42	2	WORD	sizeTopX	2
44	2	WORD	sizeTopZ	3
46	2	WORD	bottomTexture	4
48	2	WORD	sizeBottomY	5

50	2	WORD	textureIndexBottomX	6
52	2	WORD	textureIndexBottomZ	7
54	2	WORD	WindowTexture	8
56	2	WORD	sizeWindowY	9
58	2	WORD	textureIndexWindowX	10
60	2	WORD	textureIndexWindowY	11
62	2	WORD	textureIndexWindowZ	12
64	2	WORD	topTexture	13
66	2	WORD	sizeTopY	14
68	2	WORD	textureIndexTopX	15
70	2	WORD	textureIndexTopZ	16
72	2	WORD	roofTexture	17
74	2	WORD	textureIndexRoofX	18
76	2	WORD	textureIndexRoofZ	19

Windsock

Record with fixed length of 46 byte

offset	length	format	description	contents
0	2	WORD	ID	0×0003
2	2	WORD	size	$0 \times 002 \mathrm{e}$
4	4	DWORD	longitude	
8	4	DWORD	latitude	
12	4	DWORD	altitude	
16	2	WORD	altitudeIsAGL (0x0001 = TRUE)	
18	2	WORD	pitch	
20	2	WORD	bank	
22	2	WORD	heading	
24	2	WORD	imageComplexity	
26	2	WORD	unknown	
28	4	float	poleHeight	
32	4	float	sockLength	
36	1	BYTE	PoleColor: blue	
37	1	BYTE	PoleColor:green	
38	1	BYTE	PoleColor: red	
39	1	BYTE	PoleColor ?	
40	4	BYTE[4]	SockColor	flag: lighted (TRUE $=0 \times 0001)$
44	2	WORD	flag	

TRIGGER

The record consists of a fixed part and a variable part. The fixed part is 34 byte long and has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0×0007
2	2	WORD	size : variable	
4	4	DWORD	longitude	
8	4	DWORD	latitude	
12	4	DWORD	altitude	
16	2	WORD	altitudeIsAGL (0x00001 = TRUE)	
18	2	WORD	pitch	
20	2	WORD	bank	
22	2	WORD	heading	
24	2	WORD	imageComplexity	
26	2	WORD	unknown	
28	2	WORD	type (0x0000 = REFUEL_REPAIR, $0 x 0001 ~=~ W E A T H E R ~$	

30	4	float	triggerHeight	
in case of WEATHER the variable part has the following structure	of WEATHER the variable part has the following structure			
34	2	WORD	type 0x0001 = RIDGE_LIFT 0×0002 = UNIDIRECTIONAL_TURBULENCE note: in bglcomp.xsd this keyword is spelled NONDIRECTIONAL_TURBULENCE, but the compiles does not understand it. If you change the keyword in bglcomp.xsd compilation is ok. 0×0003 = DIRECTIONAL_TURBULENCE $0 \times 0004=$ THERMAL	
36	4	float	heading	
40	4	float	scalar	
44	4	DWORD	number of vertices	
			and then for each vertex:	
	4	float	BiasX	
	4	float	BiasZ	
in case of FUEL_REPAIR the variable part has the following structure				
34	4	DWORD	```fuel type and availability BITFIELD: bit 0-1: type 73 bit 2-3: type 87 bit 4-5: type 100 bit 6-7: type 130 bit 8-9: type 145 bit 10-11: type MOGAS bit 12-13: type JET bit 14-15: type JETA bit 16-17: type JETA1 bit 18-19: type JETAP bit 20-21: type JETB bit 22-23: type JET4 bit 24-25: type JET5 bit 26-29 : unused bit 30 : piston type bit 31 : jet type for all except last two : 0 = NO; 1 = UNKNOWN; 2 = PRIOR_REQUEST; 3 = YES when type=UNKNOWN and availability = YES then type=100 and type = JETA both are set to availability=YES```	
38	4	DWORD	number of vertices	
			and then for each vertex	
	4	float	BiasX	
	4	float	BiasZ	

Marker

The marker record has a fixed length of 28 byte with the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0×0018
2	4	DWORD	size	$0 \times 0000001 \mathrm{C}$
6	1	BYTE	heading	
7	1	BYTE	Type $0=$ INNER; $1=$ MIDDLE; $2=$ OUTER $3=$ BACKCOURSE	
8	4	DWORD	longitude latitude	
12	4	DWORD		
16	4	DWORD	altitude	
20	4	DWORD	ident (special format)	
24	2	WORD	region (special format)	0×0000
20	2	WOrd	unknown	

Boundary

offset	length	format	description	contents
0	,	WORD	ID	0x0020
2	4	DWORD	size : varying	
6	1	BYTE	type $00=$ NONE 01 $=$ CENTER $02=$ CLASS_A 03 $=$ CLASS_B $04=$ CLASS_C 05 $=$ CLASS_D $06=$ CLASS_E 07 $=$ CLASS_F $08=$ CLASS_G 09 $=$ TOWER $0 a=$ CLEARANCE $0 b$ $=$ GROUND $0 c=$ DEPARTURE $0 d=$ APPROACH $0 \mathrm{e}=$ MOA $0 f$ $=$ RESTRICTED $10=$ PROHIBITED 11 $=$ WARNING $12=$ ALERT 13 $=$ DANGER $14=$ NATIONAL_PARK 15 $=$ MODEC $16=$ RADAR 17 $=$ TRAINING	
7	1	BYTE	```BIT 0-3: maximumAltitudeType BIT 4-7: minimumAltitudeType 1 = MAIN_SEA_LEVEL (= UNKNOWN) 2 = ABOVE_GROUND_LEVEL 3 = UNLIMITED```	
8	4	DWORD	minimum longitude of area covered	
12	4	DWORD	minimum latitude of area covered	
16	4	DWORD	minimumAltitude * 1000	
20	4	DWORD	maximum longitude of area covered	
24	4	DWORD	maximum latitude of area covered	
28	4	DWORD	maximumAltitude	
32	2	WORD	type field of name record	0×19
34	4	DWORD	size of name record	
36	size-6	STRING	name	

on this follows a record describing the drawing of the lines

offset	length	format	description	contents
0	2	WORD	ID	0x
2	4	DWORD	size : varying	
6	2	WORD	number of points to follow	
			for each point 10 bytes	
0	2	WORD	```type of point 1 = start 2 = line 3 = origin 4 = arc clockwise 5 = arc counter-clockwise 6 = circle NB: in case of circle, the entries for minimumAltitude and maximumAltitude over- ride the values in start if both are given. the start entry is in case of circle not needed at all```	
2	4	DWORD	latitude of point (in case of circle: unknown, = 0x0000)	
6	4	DWORD	longitude of point (in case of circle: float: radius	

Geopol

fixed part:

offset	length	format	description	contents
0	2	WORD	ID	0×0023
2	4	DWORD	size : varying	
6	2	WORD	Bit 0-13: number of vertices number of vertices BIT 14-15: type $(0 x 40 ~=~ B O U N D A R Y, ~ 0 x 80 ~=~ C O A S T L I N E ~) ~$	
8	4	DWORD	minimum longitude	
12	4	DWORD	minimum latitude	
16	4	DWORD	maximum longitude	
20	4	DWORD	maximum latitude	

variable part: for each vertex

0	4	DWORD	longitude	
4	4	DWORD	latitude	

Model data

The model data structure has a fixed length of 24 bytes

offset	length	format	description	contents
0	16	GUID	name	
16	4	DWORD	mdl file offset	
20	4	DWORD	mdl file length	

ExclusionRectangle

This record has a fixed length record of 20 bytes

offset	length	format	description	contents
0	2	WORD	exclusion type 0x0008 = excludeAll otherwise: bit 8 = Beaconobjects bit 9 = Effectobjects bit 10 = GenericBuildingObjects bit 11 = Libraryobjects bit 12 = TaxiwaySignobjects bit 13 = Triggerobjects bit 14 = Windsock0bjects	
2	2	WORD	size (unused)	

Namelist

The namelist contains only one record of variable length. It consists of a fixed part and a variable part. The fixed part is 42 bytes long and has the following structure:

offset	length	format	description	contents
0	2	WORD	ID	0×0027
2	4	DWORD	size (?) seems always to be 0x00000000	
6	2	WORD	number of region names	
8	2	WORD	number of country names	
10	2	WORD	number of state names	
12	2	WORD	number of city names	
14	2	WORD	number of airport names	
16	2	WORD	number of ICAO ident.	
18	4	DWORD	offset of region list (from start of record)	
22	4	DWORD	offset of country list	
26	4	DWORD	offset of state list	
30	4	DWORD	offset of city list	
34	4	DWORD	offset of airport list	
38	4	DWORD	offset of ICAO ident list	

The lists for region, country, state, city and airport names have all the same structure:
an index with 1 DWORD for each entry in the list, containing the offset of the nth name from the beginning of the names part (i.e. after the index)
followed by the names in form of zero-terminated strings
The ICAO list has a different structure. It contains n entries (one for each ICAO name), each of them 20 bytes long, with the following structure;:

offset	length	format	description
0	1	BYTE	region name index (all indexes start with 0 for the first name in the relevant list)
1	1	BYTE	country name index
2	2	WORD	state name index
4	2	WORD	city name index
6	2	WORD	airport name index
8	4	DWORD	ICAO identifier (special format)
12	4	DWORD	unknown
16	4	DWORD	unknown

